1. 首页
  2. 数学
  3. 初中数学
  4. 二次根式的加减乘除混合运算,二次根式的化简

下列等式成立的是()A.4+9=4+9B.27=33C.3+3=33D.(-4)2=-4

一、题文

下列等式成立的是(  )
A.
4+9
=
4
+
9
B.
27
=3
3
C.3+
3
=3
3
D.
(-4)2
=-4

考点提示:二次根式的加减乘除混合运算,二次根式的化简

二、答案

A、∵
4+9
=
13
4
+
9
=2+3=5,故本选项错误;
B、
27
=3
3
,故本选项正确;
C、3+
3
≠3
3
,故本选项错误;
D、
(-4)2
=4,故本选项错误.
故选B.

三、考点梳理

知名教师分析,《下列等式成立的是()A.4+9=4+9B.27=33C.3+3=33D.(-4)2=-4》这道题主要考你对 二次根式的加减乘除混合运算,二次根式的化简 等知识点的理解。

关于这些知识点的“解析掌握知识”如下:

知识点名称:二次根式的加减乘除混合运算,二次根式的化简

考点名称:二次根式的加减乘除混合运算,二次根式的化简
  • 二次根式的加减乘除混合运算:
    顺序与师叔运算的顺序一样,先乘方,后乘除,最后算加减,有括号的先算括号内的。
    ①在运算过程中,多项式乘法,乘法公式和有理数(式)中的运算律在二次根式的运算中仍然适用。
    ②二次根式的加减乘除混合运算过程中,每个根式可以看作是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”。
    ③运算结果是根式的,一般应表示为最简二次根式。
    二次根式的化简:
    先对分子、分母因式分解,能约分的就约分,能开方的就开方,或先对被开方数进行通分,然后再通过分母有理化进行化简。
  • 二次根式混合运算掌握:
    1、确定运算顺序。
    2、灵活运用运算定律。
    3、正确使用乘法公式。
    4、大多数分母有理化要及时。
    5、在有些简便运算中也许可以约分,不要盲目有理化。
    6、字母运算时注意隐含条件和末尾括号的注明。
    7、提公因式时可以考虑提带根号的公因式。

    二次根式化简方法:
    二次根式的化简是初中阶段考试必考的内容,初中竞赛的题目中也常常会考察这一内容。
    分母有理化:
    分母有理化即将分母从非有理数转化为有理数的过程,以下列出分母有理化的几种方法:
    (1)直接利用二次根式的运算法则:
    例:
    (2)利用平方差公式:
    例:
    (3)利用因式分解:
    例:(此题可运用待定系数法便于分子的分解)

    换元法(整体代入法):
    换元法即把根式中的某一部分用另一个字母代替的方法,是化简的重要方法之一。
    例:在根式中,令,即可得到
    原式=√(u2+9-6u)+√(u2+25-10u)=√(u-3)2+√(u-5)2=2u-8=2√(x+2)-8

    提公因式法:
    例:计算


    巧构常值代入法:
    例:已知x2-3x+1=0,求的值。
    分析:已知形如ax2+bx+c=0(x≠0)的条件,所求式子中含有的项,可先将ax2+bx+c=0化为x+=,即先构造一个常数,再代入求值。
    解:显然x≠0,x2-3x+1=0化为x+=3。
    原式==2.

本文来自投稿,不代表本站立场,如若转载,请注明出处:https://www.planabc.net/shuxue/1141619.html