1. 首页
  2. 数学
  3. 初中数学
  4. 等式的性质余角,补角

下列叙述错误的是()A.等式两边加(或减)同一个数(或式子),结果仍相等B.等式两边乘以(或除以)同一个数(或式子),结果仍相等C.锐角的补角一定是钝角D.如果两个角是同一个角的余

一、题文

下列叙述错误的是(  )
A.等式两边加(或减)同一个数(或式子),结果仍相等
B.等式两边乘以(或除以)同一个数(或式子),结果仍相等
C.锐角的补角一定是钝角
D.如果两个角是同一个角的余角,那么它们相等

考点提示:等式的性质,余角,补角

二、答案

B

三、考点梳理

知名教师分析,《下列叙述错误的是()A.等式两边加(或减)同一个数(或式子),结果仍相等B.等式两边乘以(或除以)同一个数(或式子),结果仍相等C.锐角的补角一定是钝角D.如果两个角是同一个角的余》这道题主要考你对 等式的性质余角,补角 等知识点的理解。

关于这些知识点的“解析掌握知识”如下:

知识点名称:等式的性质,余角,补角

考点名称:等式的性质
  • 等式:
    含有等号的式子叫做等式(数学术语)。
    形式:把相等的两个数(或字母表示的数)用“=”连接起来。
    等式可分为矛盾等式和条件等式。矛盾等式就是左右两边不相等的"等式"。也就是不成立的等式,比如5+2=8,实际上5+2=7,所以5+2=8是一个矛盾等式.有些式子无法判断是不是矛盾等式,比如x-9=2,只有x=11时这个等式才成立(这样的等式叫做条件等式),x≠11时,这个等式就是矛盾等式。
  • 等式的性质:
    1.等式两边同加上(或减去)同一个数或同一个整式,所得结果仍是等式。
    即若a=b,则a±m=b±m。
    2.等式两边同乘以(或除以)同一个数(除数不能为零),所得结果仍是等式。
    即若a=b,则am=bm,(m≠0)。
    3.等式具有传递性。
    若a1=a2,a2=a3,a3=a4,……an=an,那么a1=a2=a3=a4=……=an
    4.等式两边同时乘方(或开方),两边依然相等若a=b 那么有a^c=b^c 或(c次根号a)=(c次根号b)
    5.等式的对称性(若a=b,则b=a)。
    等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质。如移项,运用了等式的性质1;去分母,运用了等式的性质2。
    运用等式的性质,涉及除法时,要注意转换后,除数不能为0,否则无意义。
  • 拓展
    1:等式两边同时被一个数或式子减,结果仍相等。
    如果a=b,那么c-a=c-b
    2:等式两边取相反数,结果仍相等。
    如果a=b,那么-a=-b
    3:等式两边不等于0时,被同一个数或式子除,结果仍相等。
    如果a=b≠0,那么c/a=c/b
    4:等式两边不等于0时,两边取倒数,结果仍相等。
    如果a=b≠0,那么1/a=1/b

考点名称:余角,补角
  • 余角:
    如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角。
    ∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A
    补角:
    如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角
    ∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A的补角=180°-∠A

  • 补角的性质:
    同角的补角相等。比如:∠A+∠B=180°,∠A+∠C=180°,则:∠C=∠B。
    等角的补角相等。比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D则:∠C=∠B。
    余角的性质:
    同角的余角相等。比如:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B。
    等角的余角相等。比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B
    注意:
    ①钝角没有余角;
    ②互为余角、补角是两个角之间的关系。如∠A+∠B+∠C=90°,不能说∠A、∠B、∠C互余;同样:如∠A+∠B+∠C=180°,不能说∠A、∠B、∠C互为补角;
    ③互为余角、补角只与角的度数相关,与角的位置无关。只要它们的度数之和等于90°或180°,就一定互为余角或补角。
  • 余角与补角概念认识提示:
    (1)定义中的“互为”一词如何理解?
    如果∠1与∠2互余,那么∠1的余角是∠2 ,同样∠2的余角是∠1 ;如果∠1与∠2互补,那么∠1的补角是∠2 , 同样∠2的补角是∠1。
    (2)互余、互补的两角是否一定有公共顶点或公共边?
    两角互余或互补,只与角的度数有关,与位置无关。
    (3)∠1 + ∠2 + ∠3 = 90°(180°),能说∠1 、∠2、 ∠3 互余(互补)吗?
    不能,互余或互补是两个角之间的数量关系。

本文来自投稿,不代表本站立场,如若转载,请注明出处:https://www.planabc.net/shuxue/1168622.html