1. 首页
  2. 数学
  3. 初中数学
  4. 一元一次不等式的解法

解下列方程或不等式:(1)-2(2x+1)-(x-5)>3(2)x2-5x+126=1+2x-43.

一、题文

解下列方程或不等式:
(1)-2(2x+1)-(x-5)>3
(2)
x
2
-
5x+12
6
=1+
2x-4
3

考点提示:一元一次不等式的解法

二、答案

(1)去括号得,-4x-2-x+5>3,
移项得,-4x-x>3+2-5,
合并同类项得,-5x>0,
把x的系数化为1得,x<0;

(2)去分母得,3x-(5x+12)=6+2(2x-4)
去括号得,3x-5x-12=6+4x-8,
移项得,3x-5x-4x=6-8+12,
合并同类项得,-6x=10,
把x的系数化为1得,x=-
5
3

三、考点梳理

知名教师分析,《解下列方程或不等式:(1)-2(2x+1)-(x-5)>3(2)x2-5x+126=1+2x-43.》这道题主要考你对 一元一次不等式的解法 等知识点的理解。

关于这些知识点的“解析掌握知识”如下:

知识点名称:一元一次不等式的解法

考点名称:一元一次不等式的解法
  • 一元一次不等式的解集:
    一个有未知数的不等式的所有解,组成这个不等式的解集。例如﹕
    不等式x-5≤-1的解集为x≤4;
    不等式x﹥0的解集是所有正实数。

    求不等式解集的过程叫做解不等式。
    将不等式化为ax>b的形式
    (1)若a>0,则解集为x>b/a
    (2)若a<0,则解集为x<b/a

    一元一次不等式的特殊解:
    不等式的解集一般是一个取值范围,但有时需要求未知数的某些特殊解,如求正数解、整数解、最大整数解等,解答这类问题关键是明确解的特征。

  • 不等式的解与解集:
    不等式成立的未知数的值叫做不等式的解。如x=1是x+2>1的解
    ①不等式的解是指某一范围内的某个数,用它来代替不等式中的未知数,不等式成立。
    ②要判断某个未知数的值是不是不等式的解,可直接将该值代入等式的左、右两边,看不等式是否成立,若成立,则是;否则不是。
    ③一般地,一个不等式的解不止一个,往往有无数个,如所有大于3的数都是x>3的解,但也存在特殊情况,如|x|≦0,就只有一个解,为x=0

    不等式的解集和不等式的解是两个不同的概念。
    ①不等式的解集一般是一个取值范围,在这个范围内的每一个数值都是不等式的一个解,不等式一般有无数个解。
    ②不等式的解集包含两方面的意思:
    解集中的任何一个数值,都能使不等式成立;解集外的任何一个数值,都不能使不等式成立。(即不等式不成立)
    ③不等式的解集可以在数轴上直观的表示出来,如不等式x-1<2的解集是x<3,可以用数轴上表示3的点左边部分来表示,在数轴上表示3的点的位置上画空心圆圈,表示不包括这一点。
  • 一元一次不等式的解法
    解一元一次不等式与解一元一次方程的方法步骤类似,只是在利用不等式基本性质3对不等式进行变形时,要改变不等式的符号。
    有两种解题思路:
    (1)可以利用不等式的基本性质,设法将未知数保留在不等式的一边,其他项在另一边;
    (2)采用解一元一次方程的解题步骤:去分母、去括号、移项、合并同类项、系数化为1等步骤。 

    解一元一次不等式的一般顺序:
    (1)去分母 (运用不等式性质2、3)   
    (2)去括号   
    (3)移项 (运用不等式性质1)   
    (4)合并同类项。   
    (5)将未知数的系数化为1 (运用不等式性质2、3)   
    (6)有些时候需要在数轴上表示不等式的解集
     
    不等式解集的表示方法:
    (1) 用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来。
    例如:x-1≤2的解集是x≤3。   
    (2) 用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解。
    用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。

本文来自投稿,不代表本站立场,如若转载,请注明出处:https://www.planabc.net/shuxue/1238440.html