1. 首页
  2. 物理
  3. 九年级物理
  4. 运动和静止的相对性变速运动平均速度的计算物理常识

北京时间2004年8月28日凌晨2点40分,雅典奥林匹克体育场,这是一个值得所有中国人铭记的日子,中国选手刘翔在男子110米栏决赛中以平12秒91世界纪录的成绩获得金牌。他成为第

一、题文

北京时间2004年8月28日凌晨2点40分,雅典奥林匹克体育场,这是一个值得所有中国人铭记的日子,中国选手刘翔在男子110米栏决赛中以平12秒91世界纪录的成绩获得金牌。他成为第一个获得奥运田径短跑项目世界冠军的黄种人。
小明在家通过电视,观看到了这一激动人心的场面。同时他又联想到了其中的一些物理知识,请你跟他一起来解答。
(1)刘翔在决赛中做的是_______运动(田“匀速运动”或“变速运动”)。
(2)你能求出刘翔在决赛中的平均速度吗?
(3)电视画面A:跑道静止不动,刘翔在跑道上飞奔;
电视画面B:跑道在急速后退,而飞奔的刘翔却始终位于屏幕的中央。这两个画面分别是两台摄像机拍摄到的。一台摄像机c固定于看台上;另一台摄像机d安装在跑道旁的轨道上。电视画面B是摄像机_______拍到的,此时,摄像机相对于地面是______的,而相对于飞奔的刘翔是______的,所以才会看到如此精彩的画面。这正说明了运动和静止是______的。
(4)观看了刘翔在男子110米栏决赛中的表现,除了上面提到的物理知识外,你还联想到了哪些物理知识?请举出两个实例并简要说明。

考点提示:运动和静止的相对性,变速运动,平均速度的计算,物理常识

二、答案

“略”

三、考点梳理

知名教师分析,《北京时间2004年8月28日凌晨2点40分,雅典奥林匹克体育场,这是一个值得所有中国人铭记的日子,中国选手刘翔在男子110米栏决赛中以平12秒91世界纪录的成绩获得金牌。他成为第》这道题主要考你对 运动和静止的相对性变速运动平均速度的计算物理常识 等知识点的理解。

关于这些知识点的“解析掌握知识”如下:

知识点名称:运动和静止的相对性,变速运动,平均速度的计算,物理常识

考点名称:运动和静止的相对性
  • 运动和静止的相对性:
    1.运动是绝对的一切物体都在运动,绝对不动的物体是没有的。

    2.静止是相对的我们平常说某物体静止,是指它相对于所选的参照物的位置没有发生变化。实际上这个被选作参照物的物体也在运动(因为一切物体都存运动),所以绝对静止的物体是不存存的.

    3.对运动状态的描述是相对的
         研究同一物体的运动状态,如果选择不同的参照物,得出的结论可以不同,但都是正确的结论。总之,不事先选定参照物,就无法对某个物体的运动状态作出肯定的回答,说这个物体运动或静止是毫无意义的。
  • 对相对性的理解:
    ①我们说运动是绝对的,这里的“运动”是一个广义概念,而说运动是相对的,是指对机械运动的描述是相对的。
    ②相对静止。两个运动物体运动的快慢相同,运动的方向相同,这两个物体就是相对静止。例如,卡车和联合收割机,同样快慢,向同一方向前进,以其中一个为参照物,另一个是静止的,属于相对静止。

    判断物体运动的方法判断:
        一个物体是否运动,怎样运动,要看它相对于参照物的位置是否在改变和怎样改变。其具体步骤是:①选定一个参照物;②观察比较物体与参照物之间位置有无变化以及怎样变化;③作出判断结论,若发生了位置变化的,则说明该物体相对于参照物在运动;若没有位置变化的,则说明该物体相对于参照物足静止的。同一个物体相对于不同的参照物,运动状态一般是不同的,

    例1位于市中心的商业大楼建有观光电梯,乘客在随电梯竖直上升的过程中,可透过玻璃欣赏到楼外美丽的城市景色。分析这一过程中,下列说法正确的是(  )
    A.以地面为参照物,乘客是静止的 B.以电悌为参照物,乘客是静止的
    C.以地面为参照物,电梯是静止的 D.以乘客为参照物,地面是静止的

    解析:以地面为参照物,乘客是运动的,所以A 错;以电梯为参照物,乘客是静止的,所以B对;以地面为参照物,电梯是运动的,所以C错;以乘客为参照物,地面是运动的,所以D错

    答案:D

考点名称:变速运动
  • 定义:
        变速运动亦称“非匀速运动”。物体的速度随时间而变化,可能是快慢程度变化,也可能是运动方向发生变化,还可能是快慢和方向同时都发生变化它是最常见的一种机械运动。按其运动的轨迹来分,有直线运动和曲线运动。例如火车、汽车和轮船从车站和码头开出的运动,都是变速运动。沿着直线、快慢变化的运动叫变速直线运动。

         由于物体运动的快慢经常改变,所以通常用平均速度来表示变速运动的快慢程度。平均速度表示做变速运动的物体在一段路程上或在一段时间内运动的平均快慢程度。它等于物体通过的路程和通过这段路程所用时间的比值,计算公式为v=
  • 变速运动又分为匀变速运动(加速度不变)和变加速运动(加速度改变)。
    匀变速直线运动:

    1、匀变速直线运动的定义:沿着一条直线且加速度不变的运动,叫做匀变速直线运动。当加速度和速度同向时,物体做匀加速直线运动,当加速度和速度反向时,物体做匀减速直线运动。 
    2、匀变速直线运动的特点:匀变速直线运动的加速度的大小和方向均不随时间变化而变化。 
    3、匀变速直线运动也是一种理想运动过程。
    4、当加速度和速度同向时,物体做匀加速直线运动,当加速度和速度反向时,物体做匀减速直线运动。
    5、公式
    速度公式:V2=V1+at
    位移时间公式:s=v1×t+1/2at2
    位移速度公式:2as=v22-v12

    变加速运动:
    “变加速运动”是相对于“匀变速运动”而言的。我们把加速度(或合外力)恒定的运动称为“匀变速运动”,把加速度(或合外力)变化的运动称为“变加速运动”。注意:加速度(或合外力)是矢量,其是否变化要看两个方面,一是大小,二是方向。

考点名称:平均速度的计算
  • 定义:平均速度来描述物体运动的快慢。它表示的是物体在某一段路程内(或某一段时间内)运动的快慢程度。
    公式:表示平均速度,用s表示路程,用t表示时间,平均速度的公式为:=
  • 巧测平均速度:
        测量物体的平均速度,需要测出物体通过的路程s和所用的时间t。路程s用刻度尺测量,时间t用计时的停表、手表等测量,再根据速度公式v=计算出平均速度。但有时可以巧妙的借助于其他已知的距离作参照,而不必用刻度尺去测量路程。

    1.测骑自行车的平均速度方法:
         利用学校操场上跑道的长度来测量。学校操场上的跑道长是已知的,如400m的跑道。用手表测出自己慢速、中速、快速骑自行车时通过.400m跑道所用的时间,则可计算出慢速、中速、快速骑自行车时的平均速度。

    2.估测汽车的平均速度方法:
         利用路边的里程碑来测量。公路边上都设置有里程碑,它是公路长度的标记。从某一里程碑,如10km处开始计时,当汽车通过 40km的里程碑时结束计时,则汽车通过的路程s: 40km—10km=30km。再根据汽车通过这段路程所用的时间,即可计算出汽车的平均速度。

    3.估测火车的平均速度方法:
        利用火车经过铁轨接口时发出的撞击声来测量。我同的铁轨每根长为12.5m。乘火车时总能听到有节奏的“嘎嘎”声。这是火车经过铁轨接口时发出的撞击声。用手表测量时间,从听到某组“嘎嘎”声开始计时,并同时从零开始数“嘎嘎”声:0、l、2、3……如存 1min内数得火车发出80组“嘎嘎”声,则火车住1min内通过的路程s=12.5×80m=1000m。根据路程和时间即可计算出火车在这1min内的平均速度v= 60km/h。

    生活中测量速度的方法:
    我们可以通过测量物体运动所经过的路程的长度,时间,然后应用公式计算物体运动的速度。
    如借助光电计时器(如图)测量小车通过一段距离的时间,从而计算出小车的运动速度。

    我们还可以用速度仪等仪器(如图)直接测量物体运动的速度。

  • 对平均速度的理解:
    ①平均速度用来粗略地描述做变速运动的物体的平均快慢程度,知道了一个做变速运动的物体的平均速度,就大体上知道了它运动的快慢,但不能精确地知道它的运动情况,即不知它何时加速,何时减速,何时中途停留。也不能准确说明物体每时每刻的位置。
    ②计算平均速度时,必须指明是哪一段路程上或哪一段时间内的平均速度。因为不同路程上或不同时间内的平均速度通常情况下是不同的。
    ⑧平均速度不是速度的算术平均值,全程的平均速度也不是各段平均速度的算术平均值,应该根据公式用总路程除以总时间去求得。

    利用列车的运行时刻表计算平均速度:
         计算做变速运动的物体在某段路程中的平均速度时,一定要用运动物体总共所用的时间,包括静止时所占用的时问。

    例2010年4月,福厦高速铁路的开通促进了海两的建设和发展。福州到厦门铁路全程约276km,下表为列车运行时刻表。问:
    (1)D6215动车组从福州直达厦门的运行时间是多少?其平均速度是多少?
    (2)动车组刹车后还要继续向前滑行一段距离,其原因是什么

    解析:(1)

    (2)见答案

    答案:(1)1.5h   184km/h (2)动车组由于具有惯性,所以它在刹车后还要继续向前滑行一段距离才会停下来。

考点名称:物理常识
  • 初中物理课本之外的物理常识:
    比如:生活中的物理知识(厨房中的物理知识、与电学有关的现象等等),有关物理的发展史、对物理作出卓越贡献的人物等等。
  • 生活中有关的物理常识:
    一、与电学知识有关的现象  
    1、电饭堡煮饭、电炒锅煮菜、电水壶烧开水是利用电能转化为内能,都是利用热传递煮饭、煮菜、烧开水的。  
    2、排气扇(抽油烟机)利用电能转化为机械能,利用空气对流进行空气变换。  
    3、电饭煲、电炒锅、电水壶的三脚插头,插入三孔插座,防止用电器漏电和触电事故的发生。  
    4、微波炉加热均匀,热效率高,卫生无污染。加热原理是利用电能转化为电磁能,再将电磁能转化为内能。  
    5、厨房中的电灯,利用电流的热效应工作,将电能转化为内能和光能。  
    6、厨房的炉灶(蜂窝煤灶,液化气灶,煤灶,柴灶)是将化学能转化为内能,即燃料燃烧放出热量。

    二、与力学知识有关的现象  
    1、电水壶的壶嘴与壶肚构成连通器,水面总是相平的。  
    2、菜刀的刀刃薄是为了减小受力面积,增大压强。 
    3、菜刀的刀刃有油,为的是在切菜时,使接触面光滑,减小摩擦。  
    4、菜刀柄、锅铲柄、电水壶把手有凸凹花纹,使接触面粗糙,增大摩擦。 
    5、火铲送煤时,是利用煤的惯性将煤送入火炉。 
    6、往保温瓶里倒开水,根据声音知水量高低。由于水量增多,空气柱的长度减小,振动频率增大,音调升高。  
    7、磨菜刀时要不断浇水,是因为菜刀与石头摩擦做功产生热使刀的内能增加,温度升高,刀口硬度变小,刀口不利;浇水是利用热传递使菜刀内能减小,温度降低,不会升至过高。三、

    三、与热学知识有关的现象 
    (一)与热学中的热膨胀和热传递有关的现象  
    1、使用炉灶烧水或炒菜,要使锅底放在火苗的外焰,不要让锅底压住火头,可使锅的温度升高快,是因为火苗的外焰温度高。 
    2、锅铲、汤勺、漏勺、铝锅等炊具的柄用木料制成,是因为木料是热的不良导体,以便在烹任过程中不烫手。  
    3、炉灶上方安装排风扇,是为了加快空气对流,使厨房油烟及时排出去,避免污染空间。  
    4、滚烫的砂锅放在湿地上易破裂。这是因为砂锅是热的不良导体,烫砂锅放在湿地上时,砂锅外壁迅速放热收缩而内壁温度降低慢,砂锅内外收缩不均匀,故易破裂。 
    5、往保温瓶灌开水时,不灌满能更好地保温。因为未灌满时,瓶口有一层空气,是热的不良导体,能更好地防止热量散失。 
    6、炒菜主要是利用热传导方式传热,煮饭、烧水等主要是利用对流方式传热的。  
    7、冬季从保温瓶里倒出一些开水,盖紧瓶塞时,常会看到瓶塞马上跳一下。这是因为随着开水倒出,进入一些冷空气,瓶塞塞紧后,进入的冷空气受热很快膨胀,压强增大,从而推开瓶塞。  
    8、冬季刚出锅的热汤,看到汤面没有热气,好像汤不烫,但喝起来却很烫,是因为汤面上有一层油阻碍了汤内热量散失(水分蒸发)。  
    9、冬天或气温很低时,往玻璃杯中倒入沸水,应当先用少量的沸水预热一下杯子,以防止玻璃杯内外温差过大,内壁热膨胀受到外壁阻碍产生力,致使杯破裂。  
    10、煮熟后滚烫的鸡蛋放入冷水中浸一会儿,容易剥壳。因为滚烫的鸡蛋壳与蛋白遇冷会收缩,但它们收缩的程度不一样,从而使两者脱离。

    (二)与物体状态变化有关的现象  
    1、液化气是在常温下用压缩体积的方法使气体液化再装入钢罐中的;使用时,通过减压阀,液化气的压强降低,由液态变为气态,进入灶中燃烧。  
    2、用焊锡的铁壶烧水,壶烧不坏,若不装水,把它放在火上一会儿就烧坏了。这是因为水的沸点在1标准大气压下是100℃,锡的熔点是232℃,装水烧时,只要水不干,壶的温度不会明显超过100℃,达不到锡的熔点,更达不到铁的熔点,故壶烧不坏。若不装水在火上烧,不一会儿壶的温度就会达到锡的熔点,焊锡熔化,壶就烧坏了。  
    3、烧水或煮食物时,喷出的水蒸气比热水、热汤烫伤更严重。因为水蒸气变成同温度的热水、热汤时要放出大量的热量(液化热)。  
    4、用砂锅煮食物,食物煮好后,让砂锅离开火炉,食物将在锅内继续沸腾一会儿。这是因为砂锅离开火炉时,砂锅底的温度高于100℃,而锅内食物为100℃,离开火炉后,锅内食物能从锅底吸收热量,继续沸腾,直到锅底的温度降为100℃为止。  
    5、用高压锅煮食物熟得快些。主要是增大了锅内气压,提高了水的沸点,即提高了煮食物的温度。  
    6、夏天自来水管壁大量“出汗”,常是下雨的征兆。自来水管“出汗”并不是管内的水渗漏,而是自来水管大都埋在地下,水的温度较低,空气中的水蒸气接触水管,就会放出热量液化成小水滴附在外壁上。如果管壁大量“出汗”,说明空气中水蒸气含量较高,湿度较大,这正是下雨的前兆。  
    7、煮食物并不是火越旺越快。因为水沸腾后温度不变,即使再加大火力,也不能提高水温,结果只能加快水的汽化,使锅内水蒸发变干,浪费燃料。正确方法是用大火把锅内水烧开后,用小火保持水沸腾就行了。  
    8、冬天水壶里的水烧开后,在离壶嘴一定距离才能看见“白气”,而紧靠壶嘴的地方看不见“白气”。这是因为紧靠壶嘴的地方温度高,壶嘴出来的水蒸气不能液化,而距壶嘴一定距离的地方温度低;壶嘴出来的水蒸气放热液化成小水滴,即“白气”。
    9、油炸食物时,溅入水滴会听到“叭、叭”的响声,并溅出油来。这是因为水的沸点比油低,水的密度比油大,溅到油中的水滴沉到油底迅速升温沸腾,产生的气泡上升到油面破裂而发出响声。  
    10、当锅烧得温度较高时,洒点水在锅内,就发出“吱、吱”的声音,并冒出大量的“白气”。这是因为水先迅速汽化后又液化,并发出“吱、吱”的响声。  
    11、当汤煮沸要溢出锅时,迅速向锅内加冷水或扬(舀)起汤,可使汤的温度降至沸点以下。加冷水,冷水温度低于沸腾的汤的温度,混合后,冷水吸热,汤放热。把汤扬起的过程中,由于空气比汤温度低,汤放出热,温度降低,倒入锅内后,它又从沸汤中吸热,使锅中汤温度降低。 

    (三)与热学中的分子热运动有关的现象  
    1、腌菜往往要半月才会变咸,而炒菜时加盐几分钟就变咸了,这是因为温度越高,盐的离子运动越快的缘故。  
    2、长期堆煤的墙角处,若用小刀从墙上刮去一薄层,可看见里面呈黑色,这是因为分子永不停息地做无规则的运动,在长期堆煤的墙角处,由于煤分子扩散到墙内,所以刮去一层,仍可看到里面呈黑色。
  • 物理学史常识:
    1、胡克:英国物理学家;发现了胡克定律(F弹=kx)
    2、伽利略:意大利的著名物理学家;伽利略时代的仪器、设备十分简陋,技术也比较落后,但伽利略巧妙地运用科学的推理,给出了匀变速运动的定义,导出S正比于t2并给以实验检验;推断并检验得出,无论物体轻重如何,其自由下落的快慢是相同的;通过斜面实验,推断出物体如不受外力作用将维持匀速直线运动的结论。后由牛顿归纳成惯性定律。伽利略的科学推理方法是人类思想史上最伟大的成就之一。
    3、牛顿:英国物理学家;动力学的奠基人,他总结和发展了前人的发现,得出牛顿定律及万有引力定律,奠定了以牛顿定律为基础的经典力学。
    4、开普勒:丹麦天文学家;发现了行星运动规律的开普勒三定律,奠定了万有引力定律的基础。
    5、卡文迪许:英国物理学家;巧妙的利用扭秤装置测出了万有引力常量。
    6、布朗:英国植物学家;在用显微镜观察悬浮在水中的花粉时,发现了“布朗运动”。
    7、焦耳:英国物理学家;测定了热功当量J=4.2焦/卡,为能的转化守恒定律的建立提供了坚实的基础。研究电流通过导体时的发热,得到了焦耳定律。
    8、开尔文:英国科学家;创立了把-273℃作为零度的热力学温标。
    9、库仑:法国科学家;巧妙的利用“库仑扭秤”研究电荷之间的作用,发现了“库仑定律”。
    10、密立根:美国科学家;利用带电油滴在竖直电场中的平衡,得到了基本电荷e。
    11、欧姆:德国物理学家;在实验研究的基础上,欧姆把电流与水流等比较,从而引入了电流强度、电动势、电阻等概念,并确定了它们的关系。
    12、奥斯特:丹麦科学家;通过试验发现了电流能产生磁场。
    13、安培:法国科学家;提出了著名的分子电流假说。
    14、汤姆生:英国科学家;研究阴极射线,发现电子,测得了电子的比荷e/m;汤姆生还提出了“枣糕模型”,在当时能解释一些实验现象。
    15、劳伦斯:美国科学家;发明了“回旋加速器”,使人类在获得高能粒子方面迈进了一步。
    16、法拉第:英国科学家;发现了电磁感应,亲手制成了世界上第一台发电机,提出了电磁场及磁感线、电场线的概念。
    17、楞次:德国科学家;概括试验结果,发表了确定感应电流方向的楞次定律。
    18、麦克斯韦:英国科学家;总结前人研究电磁感应现象的基础上,建立了完整的电磁场理论。
    19、赫兹:德国科学家;在麦克斯韦预言电磁波存在后二十多年,第一次用实验证实了电磁波的存在,测得电磁波传播速度等于光速,证实了光是一种电磁波。
    20、惠更斯:荷兰科学家;在对光的研究中,提出了光的波动说。发明了摆钟。
    21、托马斯·杨:英国物理学家;首先巧妙而简单的解决了相干光源问题,成功地观察到光的干涉现象。(双孔或双缝干涉)
    22、伦琴:德国物理学家;继英国物理学家赫谢耳发现红外线,德国物理学家里特发现紫外线后,发现了当高速电子打在管壁上,管壁能发射出X射线—伦琴射线。
    23、普朗克:德国物理学家;提出量子概念—电磁辐射(含光辐射)的能量是不连续的,E与频率υ成正比。其在热力学方面也有巨大贡献。
    24、爱因斯坦:德籍犹太人,后加入美国籍,20世纪最伟大的科学家,他提出了“光子”理论及光电效应方程,建立了狭义相对论及广义相对论。提出了“质能方程”。
    25、德布罗意:法国物理学家;提出一切微观粒子都有波粒二象性;提出物质波概念,任何一种运动的物体都有一种波与之对应。
    26、卢瑟福:英国物理学家;通过α粒子的散射现象,提出原子的核式结构;首先实现了人工核反应,发现了质子。
    27、玻尔:丹麦物理学家;把普朗克的量子理论应用到原子系统上,提出原子的玻尔理论。
    28、查德威克:英国物理学家;从原子核的人工转变实验研究中,发现了中子。
    29、威尔逊:英国物理学家;发明了威尔逊云室以观察α、β、γ射线的径迹。
    30、贝克勒尔:法国物理学家;首次发现了铀的天然放射现象,开始认识原子核结构是复杂的。
    31、玛丽·居里夫妇:法国(波兰)物理学家,是原子物理的先驱者,“镭”的发现者。
    32、约里奥·居里夫妇:法国物理学家;老居里夫妇的女儿女婿;首先发现了用人工核转变的方法获得放射性同位素

本文来自投稿,不代表本站立场,如若转载,请注明出处:https://www.planabc.net/wuli/999963.html